Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells.
نویسندگان
چکیده
SCOPE Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in diabetes, but the mechanism for their insulin-like effects remains unknown. In this study, the modulation of insulin signalling by EC and a cocoa phenolic extract (CPE) on hepatic HepG2 cells was investigated by analysing key proteins of the insulin pathways, namely insulin receptor, insulin receptor substrate (IRS) 1 and 2, PI3K/AKT and 5'-AMP-activated protein kinase (AMPK), as well as the levels of the glucose transporter GLUT-2 and the hepatic glucose production. METHODS AND RESULTS EC and CPE enhanced the tyrosine phosphorylation and total insulin receptor, IRS-1 and IRS-2 levels and activated the PI3K/AKT pathway and AMPK in HepG2 cells. CPE also enhanced the levels of GLUT-2. Interestingly, EC and CPE modulated the expression of phosphoenolpyruvate carboxykinase, a key protein involved in the gluconeogenesis, leading to a diminished glucose production. In addition, EC- and CPE-regulated hepatic gluconeogenesis was prevented by the blockage of AKT and AMPK. CONCLUSION Our data suggest that EC and CPE strengthen the insulin signalling by activating key proteins of that pathway and regulating glucose production through AKT and AMPK modulation in HepG2 cells.
منابع مشابه
Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation
Erythropoietin (EPO) has beneficial effects on glucose metabolism and insulin resistance. However, the mechanism underlying these effects has not yet been elucidated. This study aimed to investigate how EPO affects hepatic glucose metabolism. Here, we report that EPO administration promoted phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation in palmitic acid (PA)-treated HepG2 cells and...
متن کاملTriterpenoid Saponins from Stauntonia chinensis Ameliorate Insulin Resistance via the AMP-Activated Protein Kinase and IR/IRS-1/PI3K/Akt Pathways in Insulin-Resistant HepG2 Cells
Inflammation and oxidative stress play crucial roles in the etiology of type 2 diabetes mellitus. In this study, we examined the anti-diabetic effects of triterpenoid saponins extracted from Stauntonia chinensis on stimulating glucose uptake by insulin-resistant human HepG2 cells. The results showed that saponin 6 significantly increased glucose uptake and glucose catabolism. Saponin 6 also enh...
متن کاملThree Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells
Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact ...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملتغییر بیان ژن SHIP2 (SH2 domain containing inositol 5-phosphatase) با استفاده از سیستم رتروویروس در سلول های کبدی HepG2
Introduction: Dyslypydmy is one of the risk factors of cardiovascular disease in diabetics. Dyslypydmy is diagnosed by increasing in plasma triglyceride density, decreasing HDL Cholesterol, and increasing LDL especially small LDL. Several evidences from human and animal studies indicate that the role of insulin resistance is a major cause of hypertrigly ceridemia in diabetics and people with me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular nutrition & food research
دوره 57 6 شماره
صفحات -
تاریخ انتشار 2013